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Abstract. How b impose boundary conditions is CNCX to finite-cluster calculations of 
quantum spin systems, but only open-boundary clusters have been used in cluster-effective- 
field approximations up to now. In the present paper. periodic-boundary clusters are also 
considered for the formulation of cluster-effective-field approximations in frustrated quantum 
spin systems. Namely, the open-boundary-condition double-cluster approximation (OBC-DCAJ 
and the periodic-boundary-condition double-cluskr approximation (PBcocaJ are applied to the 
one-dimensional S = $ frustrated XXZ model at the ground state. These two appmximations 
are compared using the coherent-anomaly method (CAM). Within the limitation of cluster sires 
in exact-diagonalization calculations, the P B G ~  can reproduce the huephase boundary of the 
Nhldimer busition. On the other hand, the OBGDCA severely underestimates the existence 
of magnetic orders as quanhlm fluctuation is increased. These findings suggest that previous 
cluster-effective-field studies based on open-boundary clusters should be reconsidered. 

1. Introduction 

Recently two-dimensional frustrated quantum spin systems have been intensively studied. 
Especially, the following Jl-Jz model on a square lattice, 

has attracted many authors, because its ground-state properties seem to be closely related to 
the mechanism of high-temperature superconductivity. The Ndel order (figure I(a)) exists 
for JI  >> Jz [l], and the collinear order (figure l(b)), a special case of the classical four- 
sublattice Ndel order, is stabilized for 51 << 52 [2]. The main interest here is to study 
whether these classical magnetic orders survive against quantum fluctuations in the vicinity 
of the classical frustration point, Jz = 0.5J1. Although numerous studies [3-111 have 
already been made, a definite conclusion has not yet been obtained. For example, an exact- 
diagonalization study up to the 6 x 6 cluster [8] claims that there is no magnetic long-range 
order between JZ c 0.431 and Jz % 0.65J1. On the other hand, a very recent quantum 
Monte Carlo simulation up to the 8 x 8 cluster [9] suggests that the Ndel order survives 
at least up to the vicinity of JZ = 0.5J1. Such large differences originate from a slight 
variance of the extrapolation scheme of finite-cluster data, which means that this problem 
is still very subtle. 

03054470/94/041127+12$19.50 @ 1994 IOP Publishing Ltd 1127 
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Figure 1. Classical long-range orden in the JI-Jz model: (a) the N&l order. (b) ihe collinear 
OId.3. 

The cluster-effective-field approximation can be a powerful tool in such a difficult 
situation, because it usually gives an upper limit of the critical point. An approximation 
has already been proposed by Gelfand et a1 [lo] in order to enforce their series-expansion 
results [lo, 1 I]. They calculated up to an 18-spin cluster in the open-boundary conditions, 
and concluded that the classical magnetic orders are destroyed between Jz zz 0.451 and 
Jz x 0.65J1, which is also consistent with the result in [7]. However, as was pointed out 
by the present authors [U],  the results obtained from cluster-effective-field approximations 
are sensitive to boundary conditions in quantum antiferromagnets. Therefore, when we 
apply these approximations to an unknown problem, such as the .l& model, we should 
first confirm the validity of the approximations in a well known model. Such a test study 
is the main purpose of the present paper. 

Here we consider the simplest model with quantum frustration-the one-dimensional 
S = f X X Z  model with a next-nearest-neighbour interaction. %o kinds of approximations 
are appIied to this model. One is the one-dimensional version of  the approximation of 
Gelfand et a1 and the other is a new type of approximation using periodic-boundary 
clusters. As a criterion of a 'good' approximation, not only qualitative plausibility but 
also quantitative correctness are required a suitable approximation should reproduce the 
true phase diagram when it is combined with the coherent-anomaly method (CAM) [13, 141. 
In section 2, ground-state properties of the present model and its coherent anomaly are 
briefly reviewed. In section 3, some basic features of the double-cluster approximation 
(DCA) [15, 161 are summarized at first, and two different formulations of the DCA are shown 
explicitly, using open- and periodic-boundary clusters. In section 4, numerical results based 
on the two approximations are given, and they are compared using CAM. The Nkel-dimer 
phase boundary is evaluated, and the origin of differences between the results obtained 
by these two approximations are discussed on the basis of the behaviour of correlation 
functions in finite clusters. The estimation of the critical exponent y is also mentioned 
here. In section 5, these descriptions are summarized and a conclusion of the present study 
is given. 
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In order to find a suitable cluster-effective-field approximation for frustrated quantum spin 
systems and to test its validity, we consider here ground-state properties of the following 
antiferromagnetic onedimensional model, 

This model has already been solved exactly at g = 0 [17] and at g = [18]. Especially, at 
the latter point, its ground state is perfectly dimerized. Since the motivation of the present 
study is the magnetic orders in the 51-J~ model, here we only consider the king region, 
( Jzy < Jz) .  &I 'this region, the ground state of the present model has the Nkel order at 
g = 0 [17] and there occurs a second-order phase transition between the N&l phase and 
the dimer phase at a certain critical point g:, as the frustration parameter g is varied from 
0 to 1. One reason why we utilize this model in the present paper is that its ground-state 
properties have already been very well studied 119-221, since it is the simplest frustrated 
quantum spin system. Another is, that quantum fluctuation is strongest in one-dimensional 
systems. Therefore, an approximation which gives a satisfactory result even in this model 
is expected to be suitable for application to~hvo-dimensional systems, such as the Jl-Jz 

model. 
Recently Tonegawa, Harada and Kaburagi estimated [21] a phase diagram of its ground 

state using the phenomenological renormalization-group and finite-size scaling methods [23], 
and Nomura and Okamoto showed [22] another phase diagram on the basis of a mapping 
onto the quantum sine-Gordon model [19] and using a level-crossing behaviour of low- 
energy excitations. These two results coincide quantitatively with one another in the king 
region. Their phase diagram will be shown later, together with the present results (figures 5 
and 7). 

Now we turn to a review of the coherent-anomaly method (CAM) [13, 141. In the present 
paper, cluster-effective-field approximations are formulated on the ground that the staggered 
magnetization is regarded as the order parameter. Namely, in the present formulation the 
N k l  phase corresponds to the 'ordered phase', and the dimer phase corresponds to the 
'disordered phase'. Then the zero-field staggered susceptibility 

shows the following classical singularity 

(2.2) 

(2.3) 

in the vicinity of its approximate critical point g,. If we consider a suitable series of 
approximations (for example, the series obtained by gradual enlargement of clusters), the 
critical coefficient j is expected to be scaled [13] as 

I "I IY-I 

and both the true critical point g: and the true critical exponent y can be estimated. 
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3. Formulation of cluster-effective-field approximations 

Recently a new class of cluster-effective-field approximations, namely the doublecluster 
approximation @CA) [15, 161, was found in the context of the application of the CAM. Thii 
approximation is a natural extension of the constant-couplig approximation [24], and it 
shows a good scaling behaviour [16] when combined with CAM. Namely, the approximate 
critical points rapidly converge to the me one, and the critical coefficients are scaled by 
formula (2.4) without any serious sizedependent correction. In the present paper, we 
consider two kinds of approximations, both of which are based on the DCA. 

Y Nonomura and M Suzuki 

3.1. Basic aspects of the DCA 

Before actual formulations of the DCA in the present model, some basic features of this 
approximation [16] are reviewed here for later convenience. In E A ,  two different clusters 
A and B @ere N A  < N B  is assumed) are u t i l i ,  and the same effective field €Id is applied 
to their boundary spins. The effective Hamiltonian of an Npspin cluster (I = A or B) is 
given by 

where U;, represents the cluster Hamiltonian and ej denotes the weight (including signs) 
of effecrive fields on the boundary spins. The consistency condition is required as 

(sa; = CS3,B (3.2) 

where (. . .); stands for the ground-state average in the cluster I, and Si represents the 
characteristic spin of each cluster, for example, the central one. The approximate critical 
point gc is obtained from the linear response of the condition (3.2) 'for the effective field, 
namely 

(3.3) 

where F,(g) is called the 'feedback function', and (A; E): denotes the 'ground-state 
canonical correlation function' [14] in the cluster I defined by 

(3.4) 

We start from the following scaling form of correlation functions of (1 + 1)-dimensional 
systems in the the disordered phase: 

e-ri6 

(%: S 3 g  - yrl-l . (3.5) 

Note that this scaling form differs slightly from the conventional one, 

(3.6) 

because after the Suzuki-Trotter decomposition [25], the correlation function (3.5) is 
expressed as the summation of all the (3.6)-type correlation functions along the Trotter 
direction. Then the feedback function of an N-spin chain is found to be scaled [16] as 

(3.7) F(g; N )  - N'-?f ( N E )  
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where f stands for a scaling function determined by the application scheme of effective 
fields and boundary conditions of relevant clusters. The exponent 11 is always less than 
unity [19] along the N&l-dimer transition line of the present model, and the inequality 
.FA&:) c F&$) is satisfied at each transition point gE. On the other hand, for g >> g:, the 
opposite inequality FA&) z &(g) holds because correlation functions decay exponentially 
in this region. In short, the feedback functions of clusters A and B behave as in figure 2. 
The crossing point of the two curves FA&) and &(g) gives the approximate critical point 
g,, which approaches the true one g,* from the disordered phase. 

F 

Figure 2. A schematic behaviour of feedback functions in the OCA. 

3.2. Open-boundary condition DCA (OBC-NA) 

Following previous studies and using the DCA [14, 151, we first COE . two Berent 
open-boundary clusters. Not only the effective field  he^ which originates from the nearest- 
neighbour interaction but also the effective fieyd -gHee from the next-nearest-neighbour 
interaction are applied to the edge spins, and -g& is also applied to the spins within one 
site from the edges (figure 3). This formulation is nothing but a one-dimensional version 
of the approximation proposed by Gelfand eta1 [lo] for the J1-& model. 

Cluster A 

- 

Figure 3. The application scheme of the effective fields in the OBC-DCA. 



1132 Y Nonomura and M Suzuki 

The effective Hamiltonian of an NI-spin cluster is given by 

-(-gHeff) [Si - S; + ( - I ) N ' - Z S & - ,  + ( - l ) N J - 1 s $ , ]  (3.8) 
and the required consistency condition is 

(3.9) 

Although such a treatment of Erustration can be justified in classical spin systems, it is not 
certain whether this approximation is also valid in quantum spin systems or not. 

3.3. Periodic-boundary condition DCA (PBC-DCA) 

Periodic-boundary clusters are used in this cluster-effective-field approximation. The Weiss- 
l i e  approximation is not suitable for the CAM fitting because of serious size-dependent 
corrections [26]. The Bethe-like approximation cannot be formulated under the PBC, because 
all the spins are equivalent under this boundary condition. Thus the DCA is essential for the 
application of the CAM to PBC clusters. 

The effective Hamiltonian of an N,-spin cluster is given by 

(3.10) 

where Ss,+l = Sp and S$,+2 = ST (or = x ,  y, 2). The required consistency condition is 
formally the same as shown in (3.9). This approximation has already been used in the study 
of the S = 4 X X Z  chain [12]. 

Since there is no real 'boundary' in PBC clusters, the application scheme of effective 
fields is not so complicated as in the OBC-DCA. Here we have only to apply H& on a 
certain spin (figure 4) in order to break the updown symmehy. Since only the vicinity of 
the critical point is treated in the CAM, all we have to consider here is the linear response 
of the order parameter for infinitesimal effective and external fields. Namely, we calculate 
nothing but canonical correlation functions of finite clusters. Thus, we need not wony about 
the 'physical meaning' of this boundary condition. 

4. Numerical results and discussion 

In OBC clusters, we have calculated up to the 18-spin cluster here. This maximum size is 
smaller than the ones used in previous finite-cluster studies 121, 221, because translational 
symmetry cannot be used in OBC clusters and some dozens of repeating diagonalization 
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Figure 4. The application scheme of the effective field in the PBGDCA 

calculations are necessary for the estimation of the approximate critical points. On the 
other hand, in PBC clusters, translational symmetry can be used [12], and larger clusters can 
be easily treated. However, since the purpose of the present paper is the comparison of the 
OBC-DCA and the PBGDCA, the maximum size of PBC clusters is also limited here to 18 
spins. As will be shown later, this cluster size is large enough for the present purpose. 

At first, we show the raw data of the approximate critical points [gc} for all the calculated 
values of Jxy/Jz (figure 5). In each value of Jxy/Jz,  g, approaches the true value g: from 
the disordered phase in the PBGDCA, and from the ordered phase in the OBC-DCA. The latter 
behaviour is not consistent with the phenomenological derivation of the coherent anomaly 
explained in 3.1. Moreover, as Jxy approaches Jz,  the discrepancy between g, and gf 
becomes larger and larger in the OBC-DCA, as is shown in figure 5. For .Ixy > O.834Jz, the 
approximate critical point obtained from the OBC-DCA becomes negative [12] even in the 
16-18 approximation. In addition, the cluster-size dependence of g, is much smaller in the 
OBGDCA than in the PBGDCA near the Heisenberg point. 

. 
0 

o'2 0.1 1, , , , 0 , B C 1 - D 4  ;,;, ~, , , ,I 
0 

0.0 
0 0.2 0.4 0.6 0.8 1 

tl 
o.2 0.1 F 0 il OBC-DCA ~ . 

0 

0.0 " " 1 " " 1 " " 1 " " " " '  
0 0.2 0.4 0.6 0.8 1 

Figure 5. The approximate critical points obtained fmm the OX-DCA and the PBC-DCA. The data 
below the N6eldimer phase boundary (solid line) [E] correspond ta the former, and the ones 
above that line correspond to the latter. The own circles stand for the 8-10 appmximations and 
the full circles stand for the 16-18 approximations. 
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0.7 
I X  
M 
0 
H 0.6 

0.5 

-1.25 -1.2 -1.15 -1.1 -1.05 

1ogkc-g:) 
Figure 6. An example of the wherent anomaly of i in the PBCXA. Log i is plotted Venus 
log(& - 9:) for JXY = 0.253,. 

Next, we estimate the hue critical point g,' using the CAM. In the PBGDCA, we make a 
least-squares fitting for the critical coefficients {z] defined by (2.3) using the scaling form 
(2.4). An example of the fitting is shown in figure ?? in the case of Jxy = 0.25Jz. The 
critical coeftjcients [ j }  are scaled by (24) very well even from a rather low-level, namely 
the 8-10 approximation. In the OBC-DCA, the least-squares fitting can be made similarly as 
in the PBGDCA, though the coherent anomaly of the approximation is not justified [161 when 
g, < g,'. Moreover, in this approximation, the value of g, becomes smaller and smaller 
as Jxr approaches Jz, and the definition of 2 in (2.3) is not appropriate in this parameter 
region. Then we re-define 1 by di[rt/dglp=gc for J, 2 0.5Jz. 

The phase diagrams estimated by the CAM are given in figure 7 together with the 
result by Nomura and Okamoto (NO) [22]. The phase boundaries obtained from the two 

0.5 

0.4 

0.3 

0.2 

0.1 

0 .o 

M 
............ 
----- 

0 0.2 0.4 0.6 0.8 1 

Jxy/Jz 

Figure 7. The phase diagrams obtained from the PBCm (broken line). Ihe OBGDCA (dashed 
line). and the properties of low-ene%y excitations (solid line) [22. 281. 
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approximations coincide quantitatively with the NO result as long as the ratio Jxy/J ,  is small, 
because g, itself is very close to g,' in this region. The estimates of g: obtained from the 
OBGDCA tend to be smaller and smaller than the NO ones as the ratio J x y / J z  grows larger. 
If the original definition (2.3) of X is used even for Jxy > 0.5 Jz.  this discrepancy becomes 
much worse. On the other hand, the PBGDCA overestimates the N&l order by at most a few 
per cent in comparison with the NO result for Jxy 2 0.55,. Although this slight discrepancy 
is not improved so much when calculations are extended up to the 22-24 approximation, 
such a tendency of overestimation is natural in cluster-effectivefield approximations, and 
this tendency changes to underestimation in the vicinity of the Heisenberg point, namely for 
Jxy 2 0.95Jz. This behaviour corresponds to the Nbel-spin fluid transition at the Heisenberg 
point. Consequently, the PBGDCA can be regarded as a good approximation in the whole 
parameter region. 

Of course, if we consider an infinite cluster, boundary conditions should not affect 
the results. However, since the size of clusters is limited in exact-diagonalization studies, 
the extrapolated results may depend on boundary conditions of the relevant clusters. The 
remaining question is that the undesired behaviour of the OBC-DCA may not be due to the 
open-boundary condition itself, but due to the present hatment of frustration effects. Then 
the centre-to-boundary correlation function of an N-spin cluster with respect to the Nbel 
order, 

(4.1) 

is calculated in OBC clusters (figures 8(a)-(c)) and in PBC clusters (figures 8(d)-(f)) for 
various anisotropy parameters. Although the correlation functions given by PBC clusters 
behave as is explained in section 3.1, those given by OBC clusters do not. Figures 8(aHc) 
clearly demonstrate that the behaviour of the approximate critical points in the OBGDCA 
originates from the principal character of correlation functions in OBC clusters, and that mere 
modifications of the application scheme of effective fields or the consistency conditions 
cannot improve the undesired behaviour of the OBGDCA. 

In the CAM fitting based on the scaling form (2.4), the critical exponent y of xn is 
also estimated simultaneously. This exponent is related [19,27] with other exponents with 
respect to the z-component correlation function,. namely U and 9~4~1, as 

N - 1  L &bk; N )  e ( ( -1)N/2-1SN/Z;  (si + (-1) S N ) ) ~  

The exponent qN&l is unity at the Heisenberg point JXy = Jz,  and U and y diverge there. This 
behaviour corresponds to a Kosterlitz-Thouless-type transition at this point. On the other 
hand, qN&l approaches 5 as Jxy goes to zero, where v = 1 and y = 3/2. Quite recently 
Nomura and Okamoto numerically estimated [28] the exponent qN&] in the intermediate 
region between these two limits on the basis of the conformal field theory. Unfortunately, the 
present estimate of y is not consistent with the one obtained from Nomura and Okamoto's 
results. The reason may be the following: when J,/J, is small, the variance of the 
approximate critical points g, is very small and the CAM fitting is difficult. On the other 
hand, when JTy/Jz is large, the N&l order is weakened by quantum fluctuations, the scaling 
region of this order becomes narrow and the present cluster sizes are not large enough for 
the estimation of critical exponents. In order to confirm this argument, we make a series 
of fittings using the data of g,' estimated by Nomura and Okamoto 122, 281. As given in 
figure 9, the estimate of y is consistent with the value obtained from the relation (4.2) for 
J,/Jz < 0.3, and these two values clearly separate as quantum fluctuations are increased, 
in accordance with a discrepancy of the esthates of g; (figure 7). In short, the CAM scaling 
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Figure 8. The centre-to-boundary correlation functions in OBC and PBC clusters: (a) JXy = 0.2Jz, 
Om; (b) Jly = 0.5Jz, OBC; (c) 3- = 0.83,. OBC: (d) Jxy = 0.2&, PBC; (e) JIy = 0.51,, PBC; 
(0 Jxy = O.SJ,, PBC 

relation (2.4) is satisfied, even in the present model, selfconristently. namely, this relation 
holds well as long as the critical point g: can be estimated accurately using itself. 

5. Summary and conclusion 

In the present paper we have considered the effect of boundary conditions on the formulation 
of cluster-effective-field approximations in frustrated quantum spin systems. Since the 
maximum cluster size to be used in exact-diagonalization calculations is limited, the effect 
of boundary conditions is not negligible. For the investigation of this effect, we have 
analysed the N&l-dimer transition of the one-dimensional S = 1 frustrated X X Z  model 
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at the ground state, using the OBC-DCA and the PBC-DCA, with the aid of the CAM. Within 
the calculation up to the 18-spin @mly ?.+spin) cluster, the approximate critical points 
obtained from the PBGDCA approach the true one as the enlargement of clusters, and this 
approximation has reproduced the true phase diagram in the whole parameter region when 
it is combined with the CAM. On the other hand, the OBC-DCA tends to underestimate the 
N b l  order more and more as the system approaches the Heisenberg point, and such a large 
discrepancy of the critical point still remains even after the CAM fitting. These facts suggest 
that the previous studies of the 3 1 4 2  model based on cluster-effective-field approximations 
should be reconsidered, because they are formulated using open-boundary clusters. In fact, 
when we make similar calculations with the J1-J2 model using periodic-boundary clusters, 
the result of approximations changes qualitatively. Details of this study will be reported 
[29] elsewhere, together with an extension of cluster-effective-field approximations to non- 
magnetic order parameters. 
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